
Examiners’ Report: Final Honour School
of Mathematics Part B Trinity Term 2020

March 5, 2021

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2020 (2019) (2018) (2017) (2016) 2020 (2019) (2018) (2017) (2016)

I 73 (59) (58) (51) (56) 46.5 (39.07) (38.16) (38.63) (39.72)
II.1 66 (67) (67) (64) (58) 42.04 (44.37) (44.08) (48.48) (41.13)
II.2 13 (20) (25) (11) (24) 8.28 (13.25) (16.45) (8.33) (17.02)
III 4 (4) (2) (3) (3) 2.55 (2.65) (1.32) (2.27) (2.13)
P 1 (0) (0) (2) (0) 0.64 (0) (0) (1.52) (0)
F 0 (1) (0) (0) (0) 0 (0.66) (0) (0) (0)
Total 157 (151) (152) (132) (141) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of
Mathematics Part B.
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• Marking of scripts.

BE Extended Essays, BSP projects, and coursework submitted for the
History of Mathematics course, the Mathematics Education course
and the Undergraduate Ambassadors Scheme, were double marked.

The remaining scripts were all single marked according to a pre-
agreed marking scheme which was strictly adhered to. For details of
the extensive checking process, see Part II, Section A.

• Numbers taking each paper.

See Table 4 on page 11.

B. New examining methods and procedure in the 2020 ex-
aminations

In light of Covid 19, the department took steps to mitigate the impact of the
pandemic on academic performance. This included changing the exami-
nations to open-book version of the standard exam papers, reducing the
units required from 8 to 6, the introduction of the safety net and Declared to
have Deserved Honours. In addition, the method of assessing mitigating
circumstances at the exam board was changed. An additional hour was
also added on to the Mathematics exam duration to allow candidates the
technical time to download and submit their examination papers via We-
blearn. Given the unusual circumstances and impact of Covid-19, ranking
was only used for the purposes of awarding prizes. The introduction of the
safety net (which was applied to cohorts) meant that the overall average
and hence rank was not well defined.

C. Changes in examining methods and procedures currently
under discussion or contemplated for the future

Due to the uncertainty with the pandemic, the department decided that
exams will be taken online for Trinity Term 2021.
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D. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 24 February 2020 and the
second notice on 5 May 2020.

All notices and the examination conventions for 2020 are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments.

Part II

A. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help
and cooperation to all those who assisted with this year’s examination,
either as assessors or in an administrative capacity. The chairman would
particularly like to thank Elle Styler for administering the whole process
with efficiency, and also to thank Nicole Collins, Charlotte Turner-Smith
and Waldemar Schlackow.

In addition the internal examiners would like to express their gratitude
to Professor Marco Schlichting and Professor Michal Branicki for carrying
out their duties as external examiners in a constructive and supportive
way during the year, and for their valuable input at the final examiners’
meetings.

Standard of performance

The standard of performance was broadly in line with recent years. In
setting the USMs, we took note of

• the Examiners’ Report on the 2019 Part B examination, and in par-
ticular recommendations made by last year’s examiners, and the
Examiners’ Report on the 2019 Part A examination, in which the 2020
Part B cohort were awarded their USMs for Part A;

• a document issued by the Mathematics Teaching Committee giving
broad guidelines on the proportion of candidates that might be ex-
pected in each class, based on the class percentages over the last five
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years in Mathematics Part B, Mathematics & Statistics Part B, and
across the MPLS Division.

Having said this, as in Table 1 the proportion of first class degrees in Math-
ematics alone awarded (39.07%) was high, and the proportion of II.2 and
below degrees in Mathematics awarded (13.25%) was low, compared to the
guidelines. One reason for this is that the examiners consider candidates in
Mathematics and in Mathematics and Statistics together when determining
USMs, and this year the Mathematics and Statistics candidates performed
poorly compared to the Mathematics candidates, so that the averages for
the two schools combined (27.87% firsts, and 12.57% II.2 and below) are
consistent with the Teaching Committee guidelines.

Setting and checking of papers and marks processing

Requests to course lecturers to act as assessors, and to act as checkers of the
questions of fellow lecturers, were sent out early in Michaelmas Term, with
instructions and guidance on the setting and checking process, including a
web link to the Examination Conventions. The questions were initially set
by the course lecturer, in almost all cases with the lecturer of another course
involved as checkers before the first drafts of the questions were presented
to the examiners. Most assessors acted properly, but a few failed to meet
the stipulated deadlines (mainly for Michaelmas Term courses) and/or to
follow carefully the instructions provided.

The internal examiners met at the beginning of Hilary Term to consider
those draft papers on Michaelmas Term courses which had been submitted
in time; consideration of the remaining papers had to be deferred. Where
necessary, corrections and any proposed changes were agreed with the
setters. The revised draft papers were then sent to the external examiners.
Feedback from external examiners was given to examiners and to the
relevant assessor for response. The internal examiners at their meeting in
mid Hilary Term considered the external examiners’ comments and the
assessor responses, making further changes as necessary before finalising
the questions. The process was repeated for the Hilary Term courses, but
necessarily with a much tighter schedule.

Due to the Pandemic, Exam Papers were revised and set to be open book.
Camera ready copy of each paper was signed off by the assessor, and then
submitted to the Examination Schools.

Candidates accessed and downloaded their exam papers via the Weblearn
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system at the designated exam time. Exam responses were uploaded to
Weblearn and made available to the Exam Board Administrator 48 hours
after the exam paper had finished.

The process for Marking, marks processing and checking was adjusted
accordingly to fit in with the online exam responses. Assessors had a short
time period to return the marks on the mark sheets provided. A check-sum
was also carried out to ensure that marks entered into the database were
correctly read and transposed from the mark sheets.

All scripts and completed mark sheets were returned, if not by the agreed
due dates, then at least in time for the script-checking process.

A team of graduate checkers, under the supervision of Nicole Collins, Elle
Styler, sorted all the marked scripts for each paper of this examination,
carefully cross checking against the mark scheme to spot any unmarked
questions or parts of questions, addition errors or wrongly recorded marks.
Also sub-totals for each part were checked against the mark scheme, noting
correct addition. In this way a number of errors were corrected, each
change was signed by one of the examiners who were present throughout
the process. A check-sum is also carried out to ensure that marks entered
into the database are correctly read and transposed from the marks sheets.

Throughout the examination process, candidates are treated anonymously,
identified only by a randomly-assigned candidate number, until after all
decisions on USMs, degree classes, mitigating circumstances notices to
examiners, prizes, and so on, have been finalized.

Standard and style of papers

It was noted at the Final Exam Board meeting that the papers 3.4 Algebraic
Number Theory and 4.3 Distribution Theory were set too easy this year.
These papers will need to be reviewed, especially if the exams are held as
open-book again.

Timetable

Examinations began on Tuesday 2nd June and finished on Thursday 2nd
July.
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Determination of University Standardised Marks

We followed the Department’s established practice in determining the
University standardised marks (USMs) reported to candidates. Papers for
which USMs are directly assigned by the markers or provided by another
board of examiners are excluded from consideration. Calibration uses
data on the Part A performances of candidates in Mathematics and Mathe-
matics & Statistics (Mathematics & Computer Science and Mathematics &
Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper:
N1, N2 and N3 are, respectively, the number of candidates taking the paper
who achieved in Part A average USMs in the ranges [69.5, 100], [59.5, 69.5)
and [0, 59.5), respectively.

The algorithm converts raw marks to USMs for each paper separately. For
each paper, the algorithm sets up a map R→ U (R = raw, U = USM) which
is piecewise linear. The graph of the map consists of four line segments:
by default these join the points (100, 100), P1 = (C1, 72), P2 = (C2, 57),
P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by the requirement
that the number of I and II.1 candidates in Part A, as given by N1 and N2,
is the same as the I and II.1 number of USMs achieved on the paper. The
value of C3 is set by the requirement that P2P3 continued would intersect
the U axis at U0 = 10. Here the default choice of corners is given by U-values
of 72, 57 and 37 to avoid distorting nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters
provide the starting point for the determination of USMs, and the Exam-
iners may then adjust them to take account of consultations with assessors
(see above) and their own judgement. The examiners have scope to make
changes, either globally by changing certain parameters, or on individ-
ual papers usually by adjusting the position of the corner points P1,P2,P3

by hand, so as to alter the map raw → USM, to remedy any perceived
unfairness introduced by the algorithm. They also have the option to in-
troduce additional corners. For a well-set paper taken by a large number
of candidates, the algorithm yields a piecewise linear map which is fairly
close to linear, usually with somewhat steeper first and last segments. If
the paper is too easy or too difficult, or is taken by only a few candidates,
then the algorithm can yield anomalous results—very steep first or last
sections, for instance, so that a small difference in raw mark can lead to a
relatively large difference in USMs. For papers with small numbers of can-
didates, moderation may be carried out by hand rather than by applying
the algorithm.
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Following customary practice, a preliminary, non-plenary, meeting of ex-
aminers was held two days ahead of the plenary examiners’ meeting to
assess the results produced by the algorithm alongside the reports from
assessors. The examiners reviewed each papers and report, considered
whether open book examination process affected candidates and reviewed
last year’s stats. The examiners discussed the preliminary scaling maps
and the preliminary class percentage figures. Adjustments were made
to the default settings as appropriate, paying particular attention to bor-
derlines and to raw marks which were either very high or very low. In
response to the coronavirus pandemic, a safety net was applied for certain
candidates. The safety net looked at the two average USMs and the classifi-
cation is based on whichever is higher. These revised USM maps provided
the starting point for a review of the scalings,paper by paper, by the full
board of examiners jointly with Mathematics & Statistics examiners.

Table 2 on page 9 gives the final positions of the corners of the piecewise
linear maps used to determine USMs.

In accordance with the agreement between the Mathematics Department
and the Computer Science Department, the final USM maps were passed
to the examiners in Mathematics & Computer Science. USM marks for
Mathematics papers of candidates in Mathematics & Philosophy were cal-
culated using the same final maps and passed to the examiners for that
School.

Comments on use of Part A marks to set scaling boundaries

None.

Mitigating Circumstance Notice to Examiners

In light of Covid 19, there was no separate panel meeting to discuss the in-
dividual notices to examiners. Even though the Mitigating Circumstances
were initially reviewed at the preliminary meeting, all decisions on the
outcome of these notices were decided at the final meeting alongside any
cohort-wide decisions and the safety net being applied.

The full board of examiners considered 36 notices in the final meeting.
The Board also received a total number of 13 MCEs carried over from the
2019 Part A Final Mathematics Exam Board. The examiners considered
each application alongside the candidate’s marks and the recommenda-
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tions proposed by the Part A 2019 Exam board. The outcomes for these
have been recorded on a spreadsheet report on Mitigating Circumstances
Notice to Examiners from Part A. All candidates with certain conditions
(such as dyslexia, dyspraxia, etc.) were given special consideration in the
conditions and/or time allowed for their papers, as agreed by the Proctors.
Each such paper was clearly labelled to assist the assessors and examiners
in awarding fair marks.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners
B1.1 17.98;37 34;57 44.8;72 50;100 9 13 4
B1.2 12.29;37 24;57 39.4;72 50;100 16 17 7
B2.1 10.63;37 26;57 41;72 50;100 20 12 1
B2.2 15.11;37 26.3;57 41;72 50;100 14 8 2
B3.1 9.77;37 17;57 32;72 50;100 25 20 6
B3.2 17.23;37 30;57 40;72 50;100 4 4 1
B3.3 8.79;37 27;57 40;70 50;100 4 5 0
B3.4 21.77;37 37.9;57 50;100 21 13 7
B3.5 10.8;37 26;57 41;72 50;100 15 11 5
B4.1 9.65;37 24;57 39;72 50;100 19 14 2
B4.2 7.99;37 17;50 36;70 50;100 11 11 1
B4.3 14.02;37 24.4;57 35;70 50;100 3 3 0
B4.4 21.20;37 39;70 50;100 2 1 0
B5.1 22.29;37 32;60 41;70 50;100 3 4 1
B5.2 10;37 28;57 45.4;72 50;100 19 21 10
B5.3 14;37 25.9;57 36.4;72 50;100 10 12 6
B5.4 13;37 29;57 41;72 50;100 10 10 6
B5.5 16;37 31;57 42;70 50;100 11 22 11
B5.6 18.38;37 30;57 43;70 50;100 10 11 7
B6.1 16;37 32.2;57 40;70 50;100 8 10 3
B6.2 13.84;37 28;57 42;72 50;100 4 5 1
B6.3 15;50 34;70 50;100 0 1 1
B7.1 10.74;37 21;57 40;70 50;100 5 14 3
B7.2 15.28;37 26;57 35;70 43;90 4 6 4
B7.3 13;40 22;60 34;70 50;100 1 6 1
B8.1 9;37 20;57 38.6;72 50;100 17 20 2
B8.2 15.45;37 26.9;57 37.4;72 50;100 8 8 1
B8.3 16.49;37 28.7;57 42;70 50;100 15 40 10
B8.4 10.05;37 27;57 38;70 50;100 6 9 3
B8.5 17;40 30.5;57 38;72 50;100 7 11 4
BSP 1700;100 1 4 4
SB1 20.73;37 36.1;57 53;70 66;100 11 17 5
SB1 34;100 11 17 5
SB2.1 11.03;37 25;57 40;70 50;100 10 10 1
SB2.2 14;37 26.1;57 40;70 50;100 8 19 8
SB3.1 14.76;37 25.7;57 40;70 50;100 20 41 10
SB3.2 29;60 42;72 50;100 1 1 2
SB4 19.13;37 30;57 41;70 50;100 8 18 119



B. Equality and Diversity issues and breakdown of the re-
sults by gender

Table 3: Breakdown of results by gender

Class Number
2020 2019 2018

Female Male Total Female Male Total Female Male Total
I 18 55 73 13 46 59 9 49 58
II.1 28 38 66 18 49 67 15 52 67
II.2 3 10 13 5 15 20 9 16 25
III 1 3 4 1 3 4 0 2 2
P 0 1 1 0 0 0 0 2 2
F 0 0 0 0 1 1 0 0 0
Total 50 107 157 37 114 151 33 119 152
Class Percentage

2020 2019 2018
Female Male Total Female Male Total Female Male Total

I 36 51.4 43.7 35.14 40.35 39.07 27.27 41.18 38.16
II.1 56 35.51 45.76 48.65 42.98 44.37 45.45 43.7 44.08
II.2 6 9.35 7.68 13.51 13.16 13.25 27.27 13.45 16.45
III 2 2.8 2.4 2.7 2.63 2.65 0 1.68 1.32
P 0 0.93 0.93 0 0 0 0 0 0
F 0 0 0 0 0.88 0.66 0 0 0
Total 100 100 100 100 100 100 100 100 100

Table 3 shows the performances of candidates broken down by gender.
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 4.

Table 4: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 28 38.14 7.99 63.64 13.53
B1.2 43 32.7 9.98 66.74 15.91
B2.1 33 38.94 6.05 72.39 9.96
B2.2 24 37.83 10.7 71.88 20.12
B3.1 54 28.39 8.39 68.83 11.13
B3.2 9 38.44 8.66 73 16.81
B3.3 9 36.89 6.74 68.33 8.89
B3.4 43 42.84 10.47 79.33 23.42
B3.5 31 34.94 10.01 67.55 15.06
B4.1 34 34.53 7.69 69.03 10.89
B4.2 22 33.18 8.58 70.29 10.91
B4.3 6 39.83 6.77 80.5 11.83
B4.4 3 44.33 4.73 84.67 13.05
B5.1 10 40.6 5.93 73.5 12.71
B5.2 51 38.45 9.68 70.59 15.84
B5.3 28 33.21 7.95 68.39 13.53
B5.4 27 36.44 7.43 68.15 11.59
B5.5 45 37.93 7.64 67.38 12.4
B5.6 30 39.67 9.24 72 17.06
B6.1 20 37.55 5.02 67.1 10.78
B6.2 11 37.18 7.18 68.09 9.96
B6.3 1 15 50
B7.1 23 34.96 8.63 70.48 12.32
B7.2 15 31.07 6.78 64.87 12.39
B7.3 9 26.89 10.12 62.11 15.21
B8.1 29 33.55 8.21 69.48 10.88
B8.2 11 34.36 4.46 68.18 7.76
B8.3 47 36.45 8.38 66.19 13.52
B8.4 16 29.25 10.2 60.81 14.33
B8.5 26 33.15 7.88 63.77 14.39
SB1 2 23 7.07 49 0
SB2.1 7 33.86 9.6 68.86 16.19
SB2.2 17 34 9.06 66.35 13.05
SB3.1 55 33.76 8.41 64.69 12.42
SB3.2 2 44 0 79 0
SB4 19 37.79 6.55 68.47 12.24
CS3a 1 - - - -
CS4b 2 - - - -
BO1.1 7 - - 68.71 6.21
BO1.1X 7 - - 64.43 11.31
BN1.1 16 - - 65.75 4.80
BN1.2 15 - - 65.53 3.09
BEE 8 - - 79.5 6.02
BSP 8 1200 158.88 70.5 9.44
101 1 - - - -

Individual question statistics for Mathematics candidates are shown below
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for those papers offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21.63 21.63 2.57 27 0
Q2 17.92 17.92 5.62 13 0
Q3 15.69 15.69 6.10 16 0

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.94 14.75 4.41 32 2
Q2 19.18 19.18 5.19 34 0
Q3 14.5 14.84 5.92 19 1

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.25 17.25 4.19 28 0
Q2 20.79 20.79 1.81 14 0
Q3 21.29 21.29 3.01 24 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.28 20.28 6.17 18 0
Q2 16.44 16.44 7.49 9 0
Q3 19 18.81 5.86 21 1

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.92 14.92 5.71 49 0
Q2 9.5 10 4.57 12 2
Q3 14.83 14.83 3.82 46 0
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Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.78 19.78 4.74 9 0
Q2 19.33 19.33 5.51 3 0
Q3 18.33 18.33 5.05 6 0

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.5 18.5 3.12 8 0
Q2 14.4 14.4 4.34 5 0
Q3 20 22.4 6.10 5 1

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 11.69 13 8.09 10 3
Q2 21.37 21.37 5.17 35 0
Q3 23.51 23.51 3.94 41 0

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.59 18.59 6.32 29 0
Q2 16.88 16.88 3.93 26 0
Q3 15 15 7.83 7 0

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.26 17.26 4.43 23 0
Q2 17.39 17.39 4.51 31 0
Q3 16.2 17 5.53 14 1
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Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.09 16.09 5.41 11 0
Q2 16 17 5.62 13 1
Q3 16.6 16.6 4.78 20 0

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20 20 4.15 6 0
Q3 19.83 19.83 4.22 6 0

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.17 19.17 3.82 6 0
Q2 23.14 23.14 2.04 7 0
Q3 18 18.43 4.38 7 1

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.17 18.30 6.11 46 1
Q2 21.52 21.52 3.99 46 0
Q3 12.73 16.125 8.08 8 3
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Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.86 13.86 5.13 14 0
Q2 16.48 17.05 5.09 20 1
Q3 17.95 17.95 3.77 22 0

Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.56 15.56 4.57 18 0
Q2 21.08 21.08 3.27 26 0
Q3 15.6 15.6 4.30 10 0

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.23 19.23 2.79 44 0
Q2 18.95 18.95 5.19 38 0
Q3 17.625 17.625 6.30 8 0

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.61 18.5 5.61 22 1
Q2 18.5 19 5.73 19 1
Q3 21.24 22.21 5.23 19 2

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.625 18.625 2.87 16 0
Q2 18.05 18.05 2.48 19 1
Q3 22 22 1.87 5 0
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Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20 20 1 3 0
Q2 20.3 20.3 3.77 10 0
Q3 16.22 16.22 4.68 9 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.32 16.76 5.59 21 1
Q2 19.86 19.86 4.61 14 0
Q3 15.82 15.82 5.33 11 0

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.31 14.31 2.98 13 0
Q2 17.64 17.64 4.67 11 0
Q3 14.33 14.33 2.88 6 0

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.5 10.5 5.43 6 0
Q2 13.6 16.25 8.73 4 1
Q3 14.25 14.25 4.77 8 0

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.46 18.46 4.72 13 0
Q2 16.43 16.43 4.96 23 0
Q3 16.14 16.14 3.37 22 0
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Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.7 18.7 1.06 10 0
Q2 15.27 15.27 4.41 11 0
Q3 23 23 1 0

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.17 20.17 4.36 47 0
Q2 16.07 16.56 5.38 41 2
Q3 12.86 14.33 5.98 6 1

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.36 10.62 4.33 13 1
Q2 13.17 13.17 7.03 6 0
Q3 19.31 19.31 4.42 13 0

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.24 17.24 3.68 25 0
Q2 17.14 17.14 5.57 22 0
Q3 10.8 10.8 4.55 5 0

Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17 17 4.58 7 0
Q2 16.86 16.86 5.34 7 0

Paper SB2.2: Statistical Machine Learning
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Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.42 16.09 5.70 11 1
Q2 13.29 13.29 4.86 7 0
Q3 19.25 19.25 4.89 16 0

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.87 17.87 3.85 38 0
Q2 17.26 17.26 4.39 43 0
Q3 15.03 15.03 5.45 29 0

Paper SB3.2: Statistical Lifetime-Models

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 21 21 - 1 0
Q2 22 22 1.41 2 0
Q3 23 23 - 1 0
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Paper SB4: Actuarial Science

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.76 19.76 3.35 17 0
Q2 21.67 21.67 2.66 6 0
Q3 16.8 16.8 3.23 15 0

Assessors’ comments on sections and on individual ques-
tions

The comments which follow were submitted by the assessors, and have
been reproduced with only minimal editing. The examiners have not in-
cluded assessors’ statements suggesting where possible borderlines might
lie; they did take note of this guidance when determining the USM maps.
Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Question 1 All candidates (but one) chose this question which is entirely
on the first part of the course (propositional calculus) and which is heavily
based on bookwork. Scores were typically quite high. For part (a)(iii)
most candidates preferred the longish detour via proving adequacy of L0

over the much easier direct route via induction on n. In part (b)(ii) sev-
eral candidates (unnecessarily) employed the Deduction Theorem without
proving it. In the proof of CT (= Completeness Theorem, part (c)), a good
number of candidates took the fact that any consistent set of formulas is
satisfiable for granted while the proof of that fact is an essential ingredient
in the proof for CT and should certainly not be omitted.

Question 2 Answers to part (a) and (b) were largely correct. Not many
candidates have realised that the proof of the Soundness Theorem for the
deductive system K′(L) in part (c) is an easy consequence of the soundness
of K(L). Most candidates came up with the correct guess that K′(L) does
not satisfy the Completeness Theorem, but only very few candidates man-
aged to present a convincing argument for it (which is, indeed, a rather
challenging task).
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Question 3 Some candidates had difficulties with part (b)(ii) and only a
third of the candidates who attempted part (c)(iii) found a correct way
for applying the Compactness Theorem. In part (c)(iv) many candidates
immitated the proof for the isomorphism of two countable dense linear or-
derings without realising that for two countable models of Σ the argument
for surjectivity does not carry over. Several candidates did not spot that the
second part of (c)(iv) called for an application of the Loewenheim-Skolem
Theorem.

General Impression: On the whole, the quality of the answers was higher
than in previous years, obviously partly due to the fact that this was an open
book exam, but maybe also because students had more time for revision
during the lockdown. Typically candidates displayed a very thorough
understanding of the material.

B1.2: Set Theory

Question 1.

Part (a) subparts ii, iii, iv were generally well done with clear demonstra-
tions. Also most found simple counter-examples to i. A few submitted
fallacious proofs of i, or of iv. Part (b) is pure bookwork and most solu-
tions were fully satisfactory. Part (c) subpart i was a challenging problem
requiring good understanding and care to formalise the argument. Many
simply quoted the main theorem on comparison of well-orders from the
notes and did not make any real progress. Some saw what needed to be
done but did not formalise the construction. Quite a few however gave full
and correct solutions. Subpart ii is fairly easy from bookwork (assuming
i) and was well done. Subpart iii required a good understanding but was
well done by many.

Question 2.

Part (a) subpart i was generally well done. Also ii was handled successfully
by many, though while quite concise proofs can be given based on standard
results, many proofs were quite circuitous, with the circle sometimes not
closing. Subpart iii was generally well done. In part (b), subparts i and iii
were generally well done, while ii less so as several proofs failed to deal
with all possibilities. Part (c) is very much along the lines of many past
problems, and the construction of the transitive closure (in a problem set),
and was generally well done with no issues. Quite a few forgot to show
the uniqueness.
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Question 3.

In part (a), subparts i and ii were generally well done. In subpart iii some
of the proofs were less clear. Part (b) is pure bookwork and was generally
well done. Part (c) was more difficult. The fact that, if the conclusion fails,
one generates an infinite descending chain, was just the first insight, and
a careful proof setting out how this gives a contradiction, using axiom of
choice or otherwise, was needed. Some attempted proofs by induction
were not correct. Quite a few however gave essentially complete answers.

0.1 B2.1 Introduction to Representation Theory

Question 1. (a) (i) Some candidates forgot to say that the identity is in A.
(This is important later, as the problem uses properties of algebras with
identity.)

(iii) The candidates were expected to give a short justification (corollary to
Jordan-Holder) why all the simple modules can be found just by looking
at the composition series they found in (ii).

(b) (ii) One mistake here was to say that if S is a simple module and x ∈ B,
then x · S is either S or 0. This is false since x · S is not a submodule in
general (but it shouldn’t be needed for the argument).

(iii) We emphasise that A/rad(A) is isomorphic to k2 as an algebra (this is
the reason why one checks that the radical is a two-sided ideal).

(c) This was the most difficult part of the question. The answer is that A is
isomorphic to its opposite via the map that swaps a and b on the diagonal.

Question 2. The solutions were generally correct. One common mistake
was in (b) (i), where some candidates did not argue that g−1a is in U, which
is a finite group, and therefore χ̃(g−1a) = χ̃(a−1g). This is an important
point, that’s why the assumptions about U are needed.

Also for (b)(iii), one needs to consider the subgroup U generated by G an
a, argue that it’s finite and then apply (ii).

Question 3. The solutions were generally correct. In (a)(ii), one needs to
say that characters determine the representations uniquely (since we are
over C), as the typical proof went by checking that the relevant characters
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are equal. Some common mistakes were found in (a)(iii): the simplest solu-
tion would use Frobenius reciprocity and an irreducible subrepresentation
of the restriction of V to H. It is also possible to use the group algebra CG
and induction from the group algebra of H. For the character table of A4,
when determining the one-dimensional characters via their values on (123)
and (132), one needs to argue why these give well-defined representations
(a priori it is possible that not all values are consistent, as it happens for
example for the dihedral groups). The best way is to use the abelianisation
of the group, which is C3 and lift characters. Also, if one uses the standard
representation of S4 restricted to A4, one needs to argue that the restriction
is irreducible.

B2.2: Commutative Algebra

Question 1: This was a popular question, chosen by a majority of the
students. Most people managed to solve the unseen part (d) correctly,
although some were worried that further hypotheses on q than those given
were necessary, this is in fact not the case. There is, in fact, a nice alternative
solution to part (d) using just linear algebra in place of the Nullstellensatz.

Question 2: This was the least popular question, with few students man-
aging to find a correct solution to the unseen part (d) of the question.
Normalisation of affine varieties (a form of resolution of singularieties) is
not on the syllabus of B2.2, but Q2(d) gives an excellent example of a sit-
uation where the normalisation of a connected affine variety fails to be
connected: here, two affine lines meeting at a point are pulled apart by
the normalisation process. This geometric picture is made possible by the
existence of the new non-trivial idempotents x/(x + y) and y/(x + y) in the
ring of fractions.

Question 3: This question was universally popular, and was mostly done
well. Most marks were lost by students not having a full grasp of the
logic required to do part (d). The Going Up Theorem, part (c), admits two
different-looking proofs, one using localisation and the other one - not.
Most students gave the second solution, but it was easier to lose marks this
way because several necessary details could easily be overlooked.

B3.1: Galois Theory

The distribution of raw marks was very homogenous for this exam.
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Question 1.

This question was quite popular. The answers were generally satisfactory
but many students forgot to prove some of their intermediate results,
especially the irreducibility of certain inseparable polynomials.

Question 2.

This question was the least popular. In (d), many students forgot to prove
that in order to prove that κ is well-defined, it is necessary to note that GM

is a normal subgroup of AutQ(L). This follows from the fact that M is a
Galois extension of Q and the fundamental theorem of Galois theory. Very
few students solved (d), (e) and (f) completely. In (c), many students made
a mistake because they did not carefully check that the decomposition
g = k(g) ·m(g) they proposed really worked.

Question 3. Along with question 1, this was the most popular question.
Many students did not think of applying Artin’s lemma or its variants
(Theorem in section 5.2 of the notes) in (a) (ii). Most students answered
(b) satisfactorily. In (c), many students attempted to apply an extension
theorem for embeddings of fields, which cannot be applied here because
its assumptions are not satisfied. In their solutions to (d) (i), many students
asserted that [K(µp) : K] = p − 1, forgetting that K is not necessarily Q ! In
(iii), a lengthy elementary solution was often provided, instead of a shorter
one, which relies on (i) and (ii).

B3.2: Geometry of Surfaces

With the exception of the very weakest candidates, students tended to
get full marks, or very nearly full marks, on the bookwork parts of the
questions 1(a),2(a),3(a), and elsewhere. I also noticed several occasions
on which candidates had completely scrambled working but then mirac-
ulously ended up with the correct (unknown) answer at the last minute,
e.g. that for 3(b)(i) the answer should be a catenoid. I take it these are the
effects of open book exams, and being able to do a google search.

In view of the open book format, the questions and mark scheme had
been adjusted to allocate fewer marks to bookwork than usual, and more
to parts which required understanding of the material. This may have
resulted in a greater spread of marks than in a normal year, with weaker
candidates unable to pick up as many marks as usual for bookwork and
memorization.
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The parts candidates found most difficult were:

1(d) In principle this is an elementary counting problem building on the
preceding bookwork, but candidates tended to write things like the
number of ways of writing c = a + b with a, b ≥ 0 is c, not c + 1. Also
you have to understand that given X#Y is orientable/non-orientable,
what are the possibilities for X,Y orientable/non-orientable?

3(b)(iv) This is about understanding what the graph of a function f (u) satis-
fying f (u)2 + (1 + f ′(u))−1 = c looks like. For c > 1, the correct graph is
U-shaped over [a, b], with f = c and f ′ = ∞ at u = a, b, and f =

√
c − 1

and f ′ = 0 at u = (a + b)/2. You can convince yourself that there is a
turning point when f ′ = 0, rather than an asymptote as u → ±∞ (as
happens when c = 1), by showing that f ′′ > 0 when f ′ = 0. Only one
candidate got the right picture.

B3.3 Algebraic Curves

Question 1: Candidates largely did well in the computational part al-
though there was a substantial number of inaccuracies such as ”division
by zero”. In c), many candidates used arguments involving excess inter-
section without carefully showing that those intersection points are really
distinct. In e), although most candidates were able to write down an ex-
plicit bijection, in the proofs there were some excessive appeals to geomet-
ric intuition leading to a lack of rigour and sometimes even to incomplete
arguments.

Question 2: In a), some candidates forgot that an inflection point also
has to be nonsingular. In b), almost all candidates used an incorrect ar-
gument involving Bézout’s theorem to show that there are only finitely
many inflection points on a curve, neglecting the possibility that it is a
component of the Hessian. In f), most candidates had the correct approach
but computational errors led to a few wrong results. Rather noteworthy,
the ramification indices computed by some candidates were off from the
correct result by exactly one.

Question 3: Almost all candidates produced their best results and the level
of answers was very high. In f), some candidates incorrectly assumed it
was enough to show that `(nP) > 0 (`(nP) > 1 was necessary) while others
did not prove that the function obtained really has a pole at nP: being in
L(nP) only gives an upper bound on the pole order at P.
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B3.4: Algebraic Number Theory

The exam seems to have been found generally quite straightforward. Quite
a lot of the material - particularly the first half of Q2 and all of Q3 - were
of a standard type.

Q1 saw relatively few attempts. It was of a fairly standard type, related
questions having appeared on previous exams. The final part (f) was
somewhat novel and this seems to have caused the most difficulty to
candidates.

Part (a) of Q2 was very standard and many candidates solved it easily.
Part (b) was novel. It was quite well-answered, with a number of different
solutions. One which caught my eye particularly was the observation that
(2020) has six distinct prime factors in Q(

√
−79), precisely the same field

considered in Q3!

Unfortunately the examiner made an error in setting Q3, taking the Minkoswki
bound to be double what it actually is. The effect of this is that the question
is easier than intended. Thus in part (a), where candidates were asked to
show that MK < 13, we in fact have MK < 6. Consequently in part (d)
one only need examine the primes 2,3,5 and not 7 and 11. This renders
part of the hint (the suggestion that candidates consider the factorisation of
3+
√
−79) irrelevant. This had the potential to confuse candidates but I did

not see very much evidence of this. A few did consider the factorisations
of (7) and (11) as well “just in case” and I apologize to them.

B3.5 Topology and Groups

There were 42 attempts. Of these only 7 achieved less than half of the
marks available. The remaining candidates showed generally a good un-
derstanding of the subject. Most candidates did not attempt Question 3
concerning covering spaces.

Question 1: (40 attempts) Part (a) and (b) were well done. Part (c) proved
more challenging. Points were lost when it was not made explicit that the
function is well-defined, a most important point here. Also, candidates let
themselves get confused by trying to follow a proof for the Fundamental
Theorem of Algebra in the lecture notes which is somewhat different. All
in all the question was well done with an average marks around 20.

Question 2: (37 attempts) This was quite a demanding question, drawing
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on different parts and techniques of the course. Many were able to compute
the fundamental group of (a)(i) realising that the resulting space is a wedge
product of the original space with a circle. The second space in (a) (ii)
proved much harder. One way to solve it would have been to see that the
resulting space is homotopy equivalent to the original space wedged with
a copy of the circle and the sphere but no candidate did so. Some good
attempts were made using the Seifert-van Kampen Theorem directly but
often were flawed, for example when the intersection of the two subspaces
was not path-connected. Part (b) of the question saw some good attempts
with most students able to write down the required maps and showing
well-definedness of the maps in and out of the fundamental group of the
Klein bottle. Hardly any students proved injectivity of the map from the
integers by noting that composition with the second map produces and
isomorphisms. Most challenging was the last part, to find the appropriate
continuous maps. But that too saw some very competent solutions. All in
all, the question produced a good spread of marks.

Question 3: (6 attempts) It was a bit disappointing to see so few candidates
approaching this question as it covered a significant and important part of
the course. There were no particular surprises. The questions themselves
being mainly straight forward and produced a good spread of marks,
including some very high ones.

B4.1: Functional Analysis I

Question 1 has been solved by about two thirds of the candidates. Part a)
was very well solved with many candidates getting full marks. In part b)
most candidates realised that they could adjust examples used to show the
incompleteness of the space of continuous functions equipped with the L1

norm to establish incompleteness of Y, but quite a few struggled with the
first part of b)i) as they worked with inapproptiate notions of convergence
(such as pointwise) rather than exploiting that if ( fn) is Cauchy sequence
in X then fn

x is a Cauchy sequence in L1 or arguing that the given space is
isometrically isomorphic to L1 via f 7→ 1

x f . Part (ii) was designed to be
somewhat challenging and as expected not all students realised that they
had to combine the norms of the two spaces X and C(I) somehow (e.g.
taking the sum of the norms) to obtain a suitable norm on Y, so that any
Cauchy sequence in Y will be Cauchy in both X and in C(I) and even fewer
students realised that since they are considering two different notions of
convergence they need to comment why the obtained limits agree. In part
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c) most students scored at least some partial, though not all of the given
examples had both the required properties (or in some cases were even a
subspace).

Question 2 was solved by most of the candidates. The first three parts
of a) were variations or applications of bookwork. Part (ii) caused more
difficulty than expected with some students confusing pointwise conver-
gence of operators with convergence in norm, some candidates using the
assumption of Cauchy sequence already in (ii) where this is not assumed
and some solutions making improper use of lim in f . Part (iv) was de-
signed to be more difficult, but many students got the right idea of using a
non-convergent Cauchy sequence in the space Z to build a non-convergent
Cauchy-sequence in the space L(X,Z) using e.g. the element of X∗\{0} from
(i). Part b) was a standard application. The second part was quite easy and
many students got full marks, while the first part required more care.

Question 3 was solved by slightly less than half of the students. The first
part was part of a exercise from a problem sheet and most students got high
marks on that, though some lost points as they were not careful enough in
arguments that involved infinite sums or limits. Part b), which was an ap-
plication of bookwork, was generally well solved. Most students correctly
explained that while quite a few of the assumptions of Stone-Weierstrass
are violated (including the assumption that L needs to be a subspace that
many students forgot) the set is still dense and gave good proofs arguing
either that the closure of the set needs to contain all piecewise linear func-
tions, which in turn are dense by Stone-Weierstrass, or explaining carefully
why the proof of Stone-Weierstrass still works with the given set L. Part
c) was a standard application and generally well solved, though a few
students tried to use arguments from the seen case where this operator is
considered on the space of continuous function, such as trying to disprove
surjectivity by saying that each element of the image has value 0 at 0, that
do not apply in the setting of Lp functions. The last part was designed to
be a bit more difficult than other parts of the question but many students
came up with good approaches, such as considering a dense not closed
subspace Y of a Banach space X in a).

B4.2: Functional Analysis II

Question 1. This question was tried by about a half of the candidates. Parts
a)-c)i) were handled reasonably well with minor exceptions. Only a few
candidates were able to tackle c)ii) and d) successfully. There are different
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ways to handle these. One easy solution for c)ii) is to realise that, if An → I
in norm, then An is invertible for large n, which is impossible as the range
of An is a proper subspace. For d), one may first show, for example, that
An is the orthogonal projection onto Vn and then use the density of the set
of polynomials in X.

Question 2. This question was tried by about two thirds of the candidates.
The standard parts of the question were handled well with minor excep-
tions. Most candidates had some ideas on how to handle c) but lost a mark
here and there somehow. A number of candidates used a sophisticated
argument involving the principle of uniform boundedness to show the
boundedness of K, as opposed to an easy application of Cauchy-Schwarz’
inequality. Only a handful of candidates were successful in using d)i) and
a 3ε-argument to finish d)ii).

Question 3. This question was attempted by all but three candidates.
Overall the question was handled reasonably well with minor exceptions.
Most candidates finished only half of c)ii), and only half of the candidates
had a feeling on how to handle c)iii). Many candidates forgot that in
c)ii), one only needed to consider real λ’s. The case |λ| ≥ 2 is more or
less straightforward. When |λ| < 2, k1, k2 are complex, unimodular and
conjugate to one another. Hence the perspective eigenvector is of the form
(α sin nθ)n≥1, for some constant α and θ, which is readily seen not to belong
to `2 unless α = 0. A truncation of this sequence could be used to construct
approximate eigenvectors in c)iii).

B4.3: Distribution Theory and Fourier Analysis: An Intro-
duction

There were only 6 candidates taking the exam and their performances were
generally quite good. The marking scheme was used throughout.

Question 1: All did well and got full marks for (a) and (b). The marks
for these had been reduced for the occassion as large parts are bookwork
and material that can easily be found in the lecture notes. In fact, there is
an unfortunate typo in (b) (a minus sign is missing). However it didn’t
cause any disruption as it doesn’t affect later parts of the question and
only two candidates mentioned it (and commented that the minus sign
was correctly there in the lecture notes). In part (c) half of the candidates
lost marks, but it isn’t clear what they found difficult here as some lost
marks on the first half and some on the second half of the question. One
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candidate explicitly mentioned ’time constraints’ and then passed onto
part (d) of the question. For part (d) only two candidates obtained the full
7 marks. It is an application of the result found in (c) and the last part is a
straightforward application of distributional derivatives in the context of
compactly supported distributions.

Question 2: Nobody attempted this question.

Question 3: All did well and got full marks on (a). The marks for this
bookwork part had been reduced for the occassion. Part (b) also went
well for most candidates and consisted of a variant of a problem from a
problem sheet. Nobody got full marks for part (c), though 3 candidates
got very close. The ones who didn’t do well on this part hadn’t realised
that the distribution was the second derivative of the principal branch of
the complex logarithm. Examples of a similar kind had been on problem
sheets. Part (d) went better than I had anticipated, and those who didn’t
get full marks had difficulties finding a particular solution.

Recommendation: Out of the 50 raw marks,

• First class performance: > 35

• Upper second class performance: [28, 35]

B4.4: Fourier Analysis and PDE’s

There were only a few candidates taking the exam and they all performed
well. The marking scheme was used throughout. I suggest that no scaling
is applied.

B5.1: Stochastic Modelling and Biological Processes

All candidates achieved good exam results, with the average raw mark
being 81%. This was a significant improvement comparing with the 2019
exam paper, when the average raw mark in the B5.1 exam was just short
of 40%. For the benefit of students considering to take the course B5.1 in
Hilary 2021, it is worth mentioning that the jump in performance from 40%
to 81% was not caused by a change in the course syllabus. The course B5.1
or its examination did not become in any way easier.
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In 2019, the examiner’s report mentioned that “there was a significant
number of incomplete and incorrect solutions, which worryingly showed
gaps in some candidates’ understanding of background Prelims and Part
A courses, which the course B5.1 builds on”. We are glad to report that
none of the candidates who took the B5.1 exam in 2020 would fall into such
a category.

In 2020, only 1/3 of the candidates took the B5.1 examination, so one would
get a better comparison of the 2019 and 2020 years, when comparing the
2020 results with the top 1/3 of the course cohort in 2019. Then the result
gap would be diminished. In Hilary 2021, it will again be important that
students who register for the course B5.1 have good understanding of the
background Prelims and Part A courses that the course B5.1 builds on.

All three questions in the 2020 exam paper were attempted by a similar
number of candidates. To solve Question 1, candidates used the Fokker-
Planck equation together with techniques for calculating the average time
and probability of adsorption. Candidates showed a very good under-
standing of the material with the average raw mark for Question 1 being
19.2 (to put it into context, the exam question testing the same part of the
syllabus in the 2019 exam only averaged at 7.4 raw marks).

In Question 2, the candidates used the Laplace transform with confidence
(covered in the prerequisite Part A course Integral Transforms). In Ques-
tion 3, it has been a pleasure to see that candidates applied a number of
different methods for studying stochastic chemical reaction systems and
found alternative ways to solve parts (c) and (d). Some candidates de-
rived and solved a PDE for the probability generating function, some used
the chemical master equation to obtain the inequality for ψ(t) and some
derived a closed formula for ψ(t).

B5.2: Applied PDEs

Question 1

Q1a) was generally well done, except for candidates occasionally commit-
ting omissions and sloppinesses.

Q1b) The Burgers’ equation is a standard example for quasilinear PDEs.
Unsurprisingly, students did well with determining the criterion for the
schock speed and causality; only a few dropped marks for giving prose
when answering the latter rather than an explicit condition in terms of u−
and u+.
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The initial data was quite complicated, giving rise to three phases: Phase
(1) involved only continuous solutions and lasted up to t = 1. Most
students got this very well, but some failed to write make the domains
in (x, t) where each case of the solution was sufficiently clear. At t = 1
a shock forms, with flat adjacent states, hence constant velocity. This,
too, was correctly obtained by the vast majority of students, with similar
limitations regarding the presentation of the solution. These two phases
were covered in (b)(ii) and many students did well here.

The next phase, after t = 3, involves the transition to a solution with a
curved shock trajectory, and this is where students had difficulties. How-
ever, a large group of student did well here, too (question (b)(iii)).

Question 2

2(a) - bookwork - was generally well done, except for candidates occasion-
ally committing omissions and sloppinesses.

2(b)(i) Also worked well for most students, with a large majority getting
the correct answer for α.

2(b)(ii) A large number of students also managed to obtain a solution for
u. The level of required simplification was not specified in the question,
so the main error that could be made here was algebraic, which quite a
few students committed. Another error that was occasionally made was
to remember that the formula for u involves line integrals.

Question 3 This question was rarely done. Some of those who did strug-
gled at various stages:

Q3(a)(i) was not really bookwork but a variation on the Dirichlet problem
that was extensively discussed in the course. Some students did not know
how to handle this.

Q3(a)(ii) The major hurdle here, it appeared, was to realise that the con-
served quantity I fixes one of the two similarity exponents. Some students
just guessed a condition or inappropriately tried to obtain the information
from the boundary condition. This part was one of the difficult parts of
the question.

Q3(b)(i) required understanding that the superposition of K guarantees
that the PDE is fulfilled and also the initial condition, but only one of the
two boundary conditions. Students who realised this finished this part
quickly.

Q3(b)(ii) With few exceptions, candidates were somewhat baffled by the
question, muddled the algebra required to showing (6) or did not know
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how to obtain the limit.

This question catered to candidates who spotted the idea of the different
parts quickly, as the required computational effort was moderate.

B5.3: Viscous Flow

Most candidates showed a good understanding of the material. Every
question attracted a few near-perfect solutions, though many candidates
found the last parts of questions challenging. Question 1 was least popular,
attempted by roughly half the candidates. Questions 2 and 3 were equally
popular, and attempted by 80% of candidates.

Question 1

Part (a) was done well by nearly all candidates, though a few did not notice
that F is the force per unit volume, not the force per unit mass.

In part (b) the drag force is in the along-stream direction, equal to the
integral of −ex · σ ·n around the boundary, with −n pointing into the fluid.
Evaluating σ for u = u(y, z)ex and n = (0,ny,nz) gives the required result.
Some candidates did not justify the disappearance of σxx and the pressure
in this geometry.

In part (c) candidates were expected to identify the velocity scale U = FL2/µ
that reduces the x-component of the Navier–Stokes equation to ∇̂2û = −1,
so −

∫
∂D̂

n · ∇û ds = −
!

D̂
∇

2û dydz = area(D̂). Some candidates tried to
scale the drag force instead.

In part (d) only three candidates made substantial progress. A few can-
didates were caught out by minus signs when integrating with respect to
arclength around the boundary. The contributions to the drag from oppo-
site edges are equal. Combining the contributions from all four edges and
simplifying gives a sum that factorises into a sum over n and a sum over
m, each of which can be evaluated using the hint.

Question 2 was most popular.

Part (a) was mostly done very well, though a few candidates did not use
the behaviour of the flow as Y→∞ to to justify discarding the ∂xp term in
the equation for the streamfunction.

Part (b) most candidates used incompressibility and integration by parts
to show that dM/dx = −dM/dx, and so must vanish. Several candidates
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lost factors of 2 in reassembling their integration by parts into −dM/dx.

Part (c) almost all candidates found α + β = 1 to balance the powers of x
and leave an ODE for f (η). However, only four candidates used constancy
of M from part (b) to find the second condition 2α = β that leads to the
unique solution α = 1/3 and β = 2/3. Many candidates reverse-engineered
these values of α and β to arrive at the ODE given in the question.

Part (d) most candidates showed that the given expression solved the
ODE, some by integrating the ODE twice using the boundary conditions,
others by differentiating the given expression. Most candidates calculated
M = (9/2) f 3

∞
, though several lost a factor of 2 when evaluating the integral

over (−∞,∞) using the hint for an integral over [0,∞).

Few candidates even attempted the sketch. This should show an expand-
ing jet with streamlines of the form Y ∼ x1/3 for large x (there is no finite
asymptotes for the streamlines). The jet is fed by a small vertical inflow
that is strongest near the Y axis. The horizontal velocity and pressure per-
turbation vanish as Y → ±∞, but the inward vertical velocity tends to a
small Y-independent function of x. A few candidates drew good sketches.

Question 3 was the next most popular

Parts (a) to (c) were mostly done well, though several candidates used
incorrect kinematic conditions on the free surface in part (b), and a few did
not correctly adapt the treatment in lectures to 3D.

Part (d) caused more difficulty, mainly with converting the evolution equa-
tion for t̂ from part (c) into polar coordinates. This is easiest using the for-
mulae in the hint to express ∇ · (1

3 ĥ3
∇ĥ) in polar coordinates. The resulting

equation for ĥ(r̂) can be integrated twice with respect to r̂ to find the steady
solution. The maximum velocity occurs at the free surface, as found in
part (c), giving ûr̂ = −∂r̂(ĥ3/6) ∼ 1/(8r0)(6Q/π)3/4δ−1/4 as δ→ 0.

B5.4: Waves and Compressible Flow

Question 1: The bookwork in part (a) was very well done. A minority of
candidates lost marks by claiming incorrectly that (ρ0(z)w′zt)zt = ρ0(z)wzztt

and then going on to derive erroneously the correct equation for w′. The
derivation of the solutions for the wave-maker in part (b) were also very
well done. A small minority of candidates lost a mark for a sign mistake
in the solution of the ODE for the x-dependence of w′.
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The derivation of the linearized boundary condition for w′ in part (c)(i) was
well done by about half of the candidates. The remainder lost marks for
incorrectly applying Taylor’s Theorem to the dynamic boundary condition
or for incorrectly eliminating p′ and η. Only a handful of candidates
derived the correct dispersion relation in part (c)(ii) by solving for λ, and
hence ω, each as a function of k, so this tail was on the harder side.

Question 2: This was the most popular question, attempted by virtu-
ally all candidates. The fairly routine exercise in separation of variables in
part (a) was generally handled well, although many failed to notice that the
Neumann boundary conditions in the x-direction permit the constant solu-
tion, in contrast with the Dirichlet boundary conditions in the y-direction.
The very few students who seemed to be put off by the slightly misleading
wording (“pressure perturbation” instead of “perturbed pressure”) were
given credit for otherwise correct working.

Part (b) involved a relatively straightforward Fourier transform and sta-
tionary phase calculation which again was generally done well. The main
difficulty encountered was with differentiating functions like |k|3, and quite
a few candidates also didn’t realise the significance of ε being small.

Question 3: This was the least popular question. The standard dam-
break problem in part (a)(i) caused few difficulties apart from an occasional
lack of sufficient explanation. On the other hand, very few candidates
made any serious headway with part (a)(ii): a frequent error was to try
and solve for positive characteristics dx/dt = u + c instead of the particle
paths dx/dt = u.

Part (b)(i) just required straightforward algebraic manipulation of the given
algebraic Rankine–Hugoniot equations, which nevertheless many students
struggled to perform accurately. In part (b)(ii), most students were able
to derive the general formula for energy production, but again were then
defeated by the simple algebraic steps needed to obtain q(β) correctly.

B5.5: Further Mathematical Biology

Question 1: This question was a popular choice, with all candidates but
one choosing to answer it. Overall, candidates answered this question
well. In part a, many candidates were confused by the rate of diffusion of
u being proportional to the density of v. Bookwork in parts b and c was
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completed successfully (as expected for an open book exam!) In part d,
the application of the theory from parts b and c generally started well, but
only a few candidates completed the final part of the question.

Question 2: Most candidates answered this question. The nondimension-
alisation in part a posed few problems (other than some small algebraic
slips). The reduction based on asymptotics in part b was carried out very
well by most candidates, although some candidates failed to get started
entirely. Part c was essentially bookwork, and so candidates answered this
part of the question successfully. Fewer candidates answered part d cor-
rectly, with some attempting a phase plane analysis rather than solving the
DE provided directly (which was disappointing, given the clear instruction
in the question) – however, lots of candidates provided a comprehensive
answer to this part of the question and scored full marks on it (perhaps
reflecting that a similar question was on a problem sheet).

Question 3: Only a few candidates chose to answer this question (with
ten submissions in total). Around half of those candidates submitted an-
swers that were largely correct (aside from minor slips). Parts a (model
interpretation) and b (non-dimensionalisation and solution of approximate
quasi-steady equation) were completed with few problems. Parts c-e (anal-
ysis of the model, and interpretation of the results of the analysis) were
generally where most marks were lost.

B5.6: Nonlinear Systems

There were a lot of good answers to each of the questions. Even answers
which didn’t score well usually lost marks through algebraic mistakes or
sloppiness rather than through a lack of understanding.

In Q1. a common mistake was to change to canonical variables x̃, ỹ in order
to find the centre manifold, to drop the tildes, and then to use the original
equation for ẋ to determine the dynamics rather than the equation for ˙̃x.
Another sloppy mistake repeated on more than one script was to calculate
the equations for x̃ and ỹ carefully in part (a), and then [again because of
dropping the tildes] simply to add µỹ to the right-hand side of ˙̃x, rather
than recalculating the transformation of the new equations [µ will appear
on the right-hand side of both ˙̃x and ˙̃y].

In Q2. most errors were algebraic mistakes, though there was some confu-
sion as to what constituted a period-2 bifurcation from an unstable steady
state.
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In Q3. there were a lot of good answers easily identifying the homoclinic
orbit explicitly, spotting that u = 1 muts be a double root of the cubic
expression which arises. A common mistake was to use ≤ rather than < in
the range of δ values in the final part of the question, missing the fact that
at the end of the range of δ the zero will be a double zero rather than the
required simple zero of M(t0).

B6.1: Numerical Solution of Differential Equations I

Q1. The question concerned the convergence analysis of the implicit Euler
method, as an example of a one-stage implicit Runge–Kutta method.
In part (a) of the question some of the candidates erroneously stated
that the required Lipschitz condition, with Lipschitz constant equal
to 1, was the consequence of |y′′(x)| being bounded by 2/(3

√
3) < 1.

In part (b) of the question some of the candidates failed to justify that
the mapping y ∈ R 7→ y − h f (y) ∈ Rwas surjective (onto). Part (c) of
the question was generally well done, although some of those who
attempted this part failed to provide a convincing justification of the
existence of an h0 ∈ (0, 1) such that the bound |y(xn)− yn| ≤ 10−2 holds
for all xn ∈ [0, 1] and all h ∈ (0, h0].

Q2. This question was attempted by all candidates who sat the exam.
Parts (a)–(d) were generally well done, but many of the candidates
had difficulties with part (e) of the question, and embarked on te-
dious and long-winded calculations based on Schur’s criterion (or
the Routh–Hurwitz criterion) to show that the stability polynomial
π(z, h̄) := (1− h̄b)z2

− h̄z− (1 + h̄(1− b)) of the linear multistep method
was not a Schur polynomial, failing to observe that z = −1 was one of
the roots of this polynomial which then directly implies the required
absolute instability for all b ∈ R \ {1/h̄}. Only one candidate correctly
realised that the case of b = 1/h̄, when the quadratic stability polyno-
mial collapses to the linear polynomial π(z, h̄) = −h̄z− h̄, with unique
root z = −1, needed to be considered separately.

Q3. This question, concerning the proof of a (conditional) maximum norm
error bound for the θ-scheme approximation of a parabolic initial
boundary-value problem, was generally well done by the six can-
didates who attempted it, although several of them lost marks by
failing to state the initial and/or boundary conditions for the scheme,
or failed to specify (or incorrectly specified) the range of indices in
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the spatial and/or temporal direction for which the scheme was being
considered.

B6.2: Numerical Solution of Differential Equations II

This exam had a rather bimodal distribution of marks, with many high
scores. It is unclear exactly the effect of it being sat as an open book exam,
but certain parts must have been easier because of this.

The first question on 2-point boundary value problems was attempted
by only a handful of candidates who mostly produced good solutions,
except for the final part where the Jacobian of a nonlinear system of finite
difference equations was asked for. Only one candidate was able to derive
this successfully.

The second question on finite difference approximatin of a variant of the
Poisson model problem was attempted by all but one candidate and there
were many high scores. Some candidates did rather more than was re-
quired, but most who presented a carefully argued solution did well. Some
observed that the continuous Neumann problem for the Laplacian has a
kernel consisting of constant functions, but failed to identify that the dis-
crete problem also has any vector of constant values in the corresponding
matrix kernel.

The third question on the Lax-Freidrichs and Lax-Wendroff methods for
first order wave equations was generally reasonably done, though there
was more carelessness in writing down some arguments/calculations. There
was some confusion about stability and, in particular, the necessity of the
CFL condition in this regard. Only a small number of candidates correctly
observed that the higher order accuracy of the Lax-Freidrichs scheme for
the modified equation in the final part might imply dissipativity.

B6.3: Integer Programming

Only a small number of students took the paper. Despite the open book
format, the spread of marks was similar to previous years, which suggests
that the paper worked well in this format. All three questions were at-
tempted, and the marks achieved by each student on the two questions
they selected was within 3 marks in each case, which suggests that the
problems were roughly of equal difficulty.
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Question 1 tested students’ understanding of LP relaxations, Chvàtal-
Gomoroy cuts and Fourier-Motzkin elimination, which makes a connection
between the early and late parts of the course. This problem was solved
very well.

Question 2 tested LP based branch and bound in the context of the binary
knapsack problem, the notion of a relaxation of an IP, and the notion
of group relaxation for equality constrained integer knapsack problems.
There was a good range of marks, the top being close to full marks.

Question 3 explored the notion of total unimodularity, and the technique
of Lagrangian relaxation in the context of a particular IP for which each
Lagrangian subproblem is totally unimodular and hence easy to solve. The
range of marks was a bit larger on this question, despite it being a fairly
standard problem.

Overall, the paper worked well and seems to have given the students the
chance to prove themselves.

B7.1: Classical Mechanics

The questions in general seemed to work well in spite of the new open
book format.

Questions:

1. Nearly all candidates attempted this question. Parts a and b were
by and large well done, although there was some confusion as to
how to use the conserved quantities from the boosts to solve for the
centre of mass (its simplest to also know the conservation of total
momentum). Many candidates had forgotten the correct procedure
to obtain an effective Lagrangian, i.e., to correctly match equations of
motion.

2. This was a routine question on normal modes that also required some
expertise in rigid bodies. This caused some difficulty for some who
ignored the angular motion of the rod or didnt see how to incorporate
that of the square lamina. The last part was relatively routine and
well done with few errors.

3. The basic material on Poisson brackets and the Legendre transform
was mostly well done. Although many noted that the angular mo-
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menta are conserved quantities for the motion, no one spotted that
their conservation already directly gives the orbits as great circles.

B7.2: Electromagnetism

Generally students did well. Most students seem to understand the main
ideas and basic content of the lecture course. There where however many
computational errors, in particular in the newer parts of the questions.

Question 1

This question is about electrostatics. There were 13 attempts and a number
of them where excellent.

Parts (a) and (b) where well done. A few students did not use the fact
that the electrostatic field is a gradient complicating the computations, and
many missed the charge at the origin hence obtaining the incorrect total
charge.

Part (c) Most students who attempted this part had the correct idea. There
where many numerical errors when computing the potential . Only a
couple of students could interpret correctly the terms in the multipole
expansion.

Question 2 There were 11 attempts some of the excellent. This is a question
about a magnetostatic configuration which can be solved using the tools
learned to solve electrostatics problems. Most points where lost in parts (c)
and (d) where some students stated incorrectly the boundary conditions
or implemented them incorrectly.

Question 3 This question is about electromagnetic wave traveling between
two plates. There were 6 attempts. Students had many problems in this
question stating the correct boundary conditions. There were a few very
good attempts though.

B7.3 Further Quantum Theory

• Problem 1: Part (a) was bookwork and uniformly answered well.
Part (b)(i) was an exercise in raising and lowering operators for the
harmonic oscillator. It could be done quite quickly with a bit of
strategy, but many candidates spent significant time and space do-
ing the manipulations inefficiently, often leading to mistakes. Part
(b)(ii) required reasoning combining the algebraic properties of the
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harmonic oscillator with the theory of angular momentum. This was
problematic for many candidates, and few collected many marks.
Part (c) was a small elaboration on part (b), requiring the rule for
addition of angular momentum and a small calculation similar to
that used in considering spin-orbit coupling for the Hydrogen atom.
This part was frequently left unanswered, though a small number of
candidates made it most of the way through.

• Problem 2: This problem was the least frequently attempted by the
candidates. Part (a) was bookwork, and almost all candidates carried
it out without trouble. Part (b) was also almost book work, though
the precise formulation may have been unfamiliar. Several candi-
dates got full marks here, though some others didn’t give a complete
treatment. It was necessary to give the specialization of the general
WKB expression to the case where the wave function was bounded
at the origin. Parts (c) and (d) were quite similar to problems that
were on a problem sheet, and required imposing the appropriate
Bohr-Sommerfeld quantization rule and performing the relevant in-
tegrals. Candidates who made a real attempt at these parts largely
were successful, though with some small errors arising. Part (e) re-
quired one to approximate the forbidden-region WKB wave function
in the neighborhood of the origin; this was mostly not answered well.

• Problem 3: This problem was the most frequently attempted by the
candidates. Part (a) was bookwork and usually answered very well,
though a number of candidates lost a mark when not being suffi-
ciently careful about the details of the argument. Part (b)(i) was a
variational problem and required computing the expectation value of
the Yukawa potential in the Hydrogen-like ground state. This could
be done more quickly using the virial theorem, though it wasn’t
strictly necessary. A good number of candidates did the calcula-
tion of the Rayleigh quotient well, but fewer correctly explained the
requirement for the existence for a bound state. Many had an issue
with inequalities arising from not realizing that E0 was negative. Part
(b)(ii) caused a lot of problems. One had to expand the Yukawa po-
tential as a power series in the parameter α and then use the various
terms in the expansion to formulate a time-independent perturbation
theory calculation. Especially important was that the O(α) term was
a constant, and so could be treated exactly, with the first nontrivial
perturbative term appearing at O(α2). This meant that the second-
order effect due to the leading nontrivial term term would contribute
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at O(α4), allowing the α3 term in the expansion of the potential to be
treated in first order perturbation theory. Many candidates failed to
put this all together, often computing fewer terms than were possible
or not explaining the structure of the calculation adequately.

B8.1: Probability, Measure and Martingales

Given the open-book conditions, the more standard parts were naturally
done accurately by most candidates, but some of the more novel parts were
also well done by plenty of people (with the exception of the final part of
Q3).

Q1: 1(a)(iii), although novel, requires only a small change to the standard
proof of Kolmogorov’s 0-1 Law, and most candidates had no problem with
it (although a few didn’t correctly read the definition of 1-dependence).
1(a)(iv) is a good test of basic probabilistic reasoning. The example in
(b)(iii) is somewhat different to ones that had been seen in the lectures or
example sheets; around a third of those attempting the question gave a
more or less complete answer to this part.

Q2: 2(a)(iii) had appeared on an example sheet and didn’t present much
problem to most candidates. Just under a third of those attempting the
question successfully found the variance in the final part, using the mar-
tingale X2

n − 2n/3.

Q3: The variance of marks on this question was fairly low. There were
plenty of straightforward marks available at the beginning of the question.
Part (b)(iv) is certainly challenging – I was hoping that some candidates
would make good progress with it, given the hint, but none were success-
ful.

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 was attempted by almost all candidates, and was generally
well done. Candidates lost marks principally for not being clear about the
role of no-arbitrage in their arguments, or failing to explain why the PDE
should hold for all S > 0. In part (b), many answers were not clear in their
explanations of the role of Delta and Gamma in hedging. Part (d) was
generally well done, but the comments on the sensitivity of the portfolios
to changes in the price were not generally clear – many answers suggested
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a misunderstanding of the infinitesimal role of Delta (it only describes the
behaviour for small changes in the price).

Question 2 was attempted by the majority of candidates. There was sig-
nificant difficulty with part (a), with many answers failing to even mention
the no-arbitrage price of the option, instead simply stating Feynman-Kac’s
statement of the relationship between the solution of the PDE and the ex-
pectation under Q. Part (b) also proved difficult – many candidates first
derived the density of ST and then attempted to compute the expectation
(rather than working with the closed form solution for ST in terms of WT

and using the density of WT, which is simpler). Some candidates also
falsely assumed that the expectation of the product 1ST>KSβT is simply the
product of the expectations of 1ST>K and SβT.

Part (c) was generally well done, but most answers did not recognise that
the solution they had derived is only the price of the barrier option assuming
the barrier has not been hit. Part (cii) also led to difficulty, with candidates
assuming that the value of SβT1

at time zero is simply Sβ0 (which is not the
case for β , 1).

Question 3 was not widely attempted. I suspect this is in part due to
the absence of discrete time questions on recent past exams. Part (biii)
caused difficulty, with very few answers pointing out that all payoffs can
be hedged in a binomial market. Part (ciii) also was not well answered, as
the payoff of the forward contract needs to be discussed.

Summary: Overall this exam was well done, particularly given the difficult
circumstances arising from the sudden move to take-home examinations
due to covid-19.

B8.3: Mathematical Models of Financial Derivatives

Question 1 was attempted by almost all candidates, and was generally
well done. Candidates lost marks principally for not being clear about the
role of no-arbitrage in their arguments, or failing to explain why the PDE
should hold for all S > 0. In part (b), many answers were not clear in their
explanations of the role of Delta and Gamma in hedging. Part (d) was
generally well done, but the comments on the sensitivity of the portfolios
to changes in the price were not generally clear – many answers suggested
a misunderstanding of the infinitesimal role of Delta (it only describes the
behaviour for small changes in the price).

42



Question 2 was attempted by the majority of candidates. There was sig-
nificant difficulty with part (a), with many answers failing to even mention
the no-arbitrage price of the option, instead simply stating Feynman-Kac’s
statement of the relationship between the solution of the PDE and the ex-
pectation under Q. Part (b) also proved difficult – many candidates first
derived the density of ST and then attempted to compute the expectation
(rather than working with the closed form solution for ST in terms of WT

and using the density of WT, which is simpler). Some candidates also
falsely assumed that the expectation of the product 1ST>KSβT is simply the
product of the expectations of 1ST>K and SβT.

Part (c) was generally well done, but most answers did not recognise that
the solution they had derived is only the price of the barrier option assuming
the barrier has not been hit. Part (cii) also led to difficulty, with candidates
assuming that the value of SβT1

at time zero is simply Sβ0 (which is not the
case for β , 1).

Question 3 was not widely attempted. I suspect this is in part due to
the absence of discrete time questions on recent past exams. Part (biii)
caused difficulty, with very few answers pointing out that all payoffs can
be hedged in a binomial market. Part (ciii) also was not well answered, as
the payoff of the forward contract needs to be discussed.

Summary: Overall this exam was well done, particularly given the difficult
circumstances arising from the sudden move to take-home examinations
due to covid-19.

B8.4: Information Theory

Question 3 was the most popular with nearly all candidates attempting it.
Question 1 and Question 2 were approximately equally popular.

Question 1: For part a) the candidates got almost all marks, omitting the
“iff”-part of Gibbs’ inequality was the main reason for point deductions.
In part b) a few candidates successfully adapted the concise approach seen
for similar problems on the problem sheets and in the lectures. However, a
large number of candidates instead tried to work with Lagrange multipli-
ers. They typically stopped after re-deriving the pmf given in the problem
without showing (global) maximality and many failed to accommodate
for the moment constraint being an inequality. In part c) most candidates
made some progress in the computations, but only a few managed to keep
an overview and find a suitable factorisation.
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Question 2: In part a) some marks were lost due to random variables
taking negative values and various imprecisions. On part b) almost all
candidates scored high. Similarly, for part ci) where again some marks
were lost for not justifying the extremum being a (global) maximum. In
part cii) some candidates struggled with finding an explicit formula for the
error-probability of the resulting BSC.

Question 3: Most candidates successfully completed the book work, part
a), and succeeded in constructing the Huffman codes, part b). Many
candidates also made good progress on part c) with dealing with odd
length codewords in a way that leads to a uniquely decodable code. A
small number of candidates proved the stronger boung ciii) directly and
deduced the upper bound in cii) from it.

B8.5: Graph Theory

Overall this paper was perhaps on the hard side, although one candidate
obtained full marks. This script was exceptional, going significantly further
than required to obtain 100%.

Question 1 was attempted by almost all candidates. It contains the most
bookwork, and ought to be straightforward. (a) was mostly well done,
though quite a few candidates gave complicated answers to (ii) rather
than a simple modification of the argument in lectures for (i). (b)(i) is
bookwork. Many candidates copied out the proof from notes of a more
general result and then applied it. This is fine, but it can be shortened a
bit in context. The example for (b)(ii) is very simple, but not that many
found it. Part (c) distinguished well. The idea is to use Menger’s Theorem
via the Fan Lemma, to extend a cycle that is shorter, in a similar manner
to on a problem sheet (in a different context). There were many incorrect
proofs given here. (E.g., if you have one x-y path, Menger does not let you
find another one independent of it.) There is a simple example (with some
variants) for the last part. It proved (as hoped!) moderately tricky to find.

Question 2 was mostly well done, though part (b) was disappointing.
Many arguments for (i) involved changing the drawing of H (which is
not allowed), or, if correct, would have shown that any two vertices in
different components can be joined, which is not true. (Consider a triangle
and two isolated vertices, one inside and one outside.) For (ii), some
lengthy arguments were given; using (i) gives a very short argument. (c)(i)
was mostly well done, with some small missing details (e.g., noting that
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unless G is a forest, the boundary of every face must contain a cycle).
Examples for (c)(iii) seemed to be easy to find, those for (iv) not so much.
For (v) just mentioning the Four Colour Theorem is enough, although it is
possible to give a proof by modifing the argument in lectures for the Five
Colour Theorem.

Question 3 was least popular, and was not well done. It seemed that
not many students absorbed even the rough ideas of the last part of the
course, even though this is just as important as the earlier parts. (a) is, as
mentioned in the notes, a simple modification of the proof for the bipartite
case in notes. No credit was given for copying out the proof from notes
– candidates were expected to show understanding by carrying out the
modification. The key idea in part (b) is to use the corollary of Erdős–
Stone, which says that to first order, the chromatic number determines the
extremal number. Then one has to argue by hand to compare the bipartite
graphs, with a bit of work needed for the strict inequalities. For (c) one can
start by using Hall’s Theorem.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind
double-marked. The marks for essays and exam were reconciled sepa-
rately. The two carry equal weight when determining a candidate’s final
mark. The first half of the exam paper (Section A) consists of six extracts
from historical mathematical texts, from which candidates must choose
two on which to comment; the second half (Section B) gives candidates a
choice of three essay topics, from which they must choose one. The Sec-
tion B essay accounts for 50% of the overall exam mark; the answers to
each of the Section A questions count for 25%.

Throughout the course, candidates were invited to analyse historical math-
ematical materials from the points of view of their ‘context’, ‘content’, and
‘significance’, and these are the three aspects that candidates are asked to
consider when looking at the extracts provided in Section A of the exam
paper. Indeed, most candidates chose to use these as subheadings within
their answer — this is entirely acceptable, although several candidates had
a tendency to place details under the wrong headings. Another common
pitfall in the handling of the extracts questions was that candidates failed
to address the content of the given extract closely enough, giving instead
a much more general account of the associated topic.
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The Section A questions 1–6 were tackled by 2, 2, 5, 4, 4, and 3 candi-
dates, respectively. Questions 1, 2 and 6 were the more difficult questions:
the first because it related to a topic that was touched upon only briefly
within one lecture, the second because it concerned a rather involved and
largely numerical manuscript source (though this had been seen), and the
last because it required the interpretation of an interpretation, namely an
editorial introduction to Cantor’s work, rather than Cantor’s own words.
Curiously, the extract in question 6 was misidentified by some candidates
as being a definition of completeness. The relative popularity of questions
3 and 4 is explained by their relating to core ideas from the lecture course
concerning the development of analysis. They were generally well done,
although an important point missed by some candidates who attempted
question 4 was that Lagrange’s study of remainder terms for Taylor series
played a role in establishing the study of inequalities of finite quantities
as the basis for analysis. Some answers to question 5 seemed to suggest
anachronistically that (abstract) group theory was an established field to
which Cauchy contributed, and failed to emphasise that Cauchy was deal-
ing not with abstract groups, but solely with groups of permutations.

In Section B of the exam paper, questions 7–9 were attempted by 5, 1,
and 4 candidates, respectively. The unpopularity of question 8 is rather
surprising, given that (like questions 3 and 4) it related to a core theme of the
lecture course. Candidates had encountered plenty of examples of Euler’s
work, both in reading and in lectures, which explains why question 7 was
the most popular question here. It was generally well done, though some
answers tended towards the superficial. Question 9 was intended as a
harder question, since possible starting points are less clear than for the
other questions, and so it is a little surprising that so many candidates chose
to attempt it. Answers to this question were interesting, and brought up
points not previously considered by the setter, but the assessors were not
quite convinced by the argument put forward by more than one candidate
that linked abstraction solely to pure mathematics.

The extended essays featured good use of primary sources, with some
candidates reproducing appropriate diagrams from those sources. Indeed,
other candidates lost marks because their verbal descriptions of geomet-
rical representations of complex numbers were difficult to follow without
diagrams — clearer explanations would have been afforded by the inclu-
sion of well-chosen diagrams that were clearly and explicitly linked to the
text. More generally, the amount of mathematical detail included by can-
didates was quite varied; those who included little should not have been
afraid to give more. Some essays were penalised because they promised
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things in their introductions that did not then feature in the essay, or oth-
erwise had conclusions that did not match up with the introductions.

Statistics Options

Reports of the following courses may be found in the Mathematics &
Statistics Examiners’ Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

SB3.2: Statistical Lifetime Models

SB4: Actuarial Science

Computer Science Options

Reports on the following courses may be found in the Mathematics &
Computer Science Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Ex-
aminers’ Report.

102: Knowledge and Reality

127: Philosophical Logic

129: Early Modern Philosophy
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